

Report on the Successes and Failures of the

U.S. Legal Code Treemapping Project

Joshua Daniel Westmoreland

CS 6985 – Legal Code Visualization

Dr. Lewis Baumstark

Computer Science Department

University of West Georgia

07/30/2009

2

Introduction And Preliminary Information

 This project was undertaken as a directed study in the Summer Semester (Session III) of

2009 at the University of West Georgia under direction from Dr. Lewis Baumstark. Its purpose

was multifold:

 Research the topics of Cyclomatic Complexity, Treemapping, and the United States

Legal Code (particularly its structure).

 Build a UML data model of the general structure of the United States Legal Code’s

general structure.

 Build a treemap of one of the Titles of United States Legal Code manually in order to get

an idea of what the treemap file (XML) and its interpretation should look like in the

chosen treemap visualization program
1
.

 Take the Title that was treemapped “by hand”, look for places where one section

references another, map these references out “by hand”, and then attempt to apply simple

cyclomatic complexity measures to the result(s).

 Create a program, the language of which was left to choice, to automate the process of

interpreting United States Legal Code XML files found on Cornell University Law

School’s website
2
.

Research

 There was little problem with the first part of this project which entailed researching the

topics of cyclomatic complexity, treemapping, and the U.S Legal Code itself. For the topics of

cyclomatic complexity and treemapping I used Wikipedia
3
 as a starting point as well as doing

several Google searches on these topics and found a great deal of information which I was

unfortunately unable to use due to the project not progressing far enough due to time constraints.

I was already somewhat familiar with the U.S Legal Code as I had a concentration in Pre-Law as

an Undergraduate. However, the Code itself is an incredibly complex set of documents and it

would take a great deal of time to understand it completely. Fortunately, my task was reasonably

simple: to understand the structure of the Code for the purposes of visualization. This was

achieved fairly quickly and led to my next task: creating a UML model of the general structure

of the U.S Legal Code.

1
 Treemap 4.1, a program for creating visual representations (treemaps) of complex hierarchical structures

Found here: http://www.cs.umd.edu/hcil/treemap-history/
2
 Found at http://voodoo.law.cornell.edu/uscxml/

3
 Cyclomatic Complexity on Wikipedia: http://en.wikipedia.org/wiki/Cyclomatic_complexity

 Treemapping on Wikipedia: http://en.wikipedia.org/wiki/Treemapping

3

UML Model

 My next task was to create a UML model of the general structure of the U.S. Legal Code.

This is the result:

The notes in this images help to explain the structure of this code in some degree of

detail, but the following can generally be said of the U.S. Legal Code in general regards to its

structure: The U.S. Legal Code has many Titles, a Title may have many Subtitles, Titles and

Subtitles may have many Chapters, a Chapter may have many Subchapters, Chapters and

Subchapters may have many Sections, a Section may have many Subsections. The following

entails subdivisions that exist below Subsection that are not present in all 50 titles: Sections and

4

subsections may have a number of Paragraphs, Paragraphs may have a number of

Subparagraphs, Paragraphs and Subparagraphs may have a number of Clauses, Clauses may

have a number of Subclauses, Clauses and Subclauses may have a number of Items, Items may

have a number of Subitems. A very complex structure, of this there is no doubt.

Manually Built Treemap

 The following is a manually built, that is to say built without the aid of any program or

script, treemap of Title 1 of the U.S. Legal Code:

This entailed building an XML file with a structure amenable to being interpreted by

Treemap 4.1. An example of this:

5

 The XML structure seen above is but a small snapshot of how a complete XML

representation of a Title of the U.S. Legal Code would look, but it provides a general idea of the

structure of such a file. The tree must have a root, literally “tree” in this case, followed by

branches off of the root of the tree as well as branches off of other branches as well. After that

there are leaves and leaves can have other leaves, but that outermost node in a tree such as this

must be a leaf.

Cyclomatic Complexity Measure

 This was not done due to both constraints on time and a shift in focus from the theoretical

measures presented by cyclomatic complexity to concrete visualization in the form of

treemapping. From this point work was begun on a program to automate conversion of the

uscodexml found online to a format that was readable by Treemap 4.1.

6

Programmatic XML conversion

 See next section for thorough details on how this part of the project worked out, including

both successes and failures.

7

Programmatic XML Conversion: The Project As It Stands

 At the beginning of July 2009 work was begun on a program to automate the process of

converting the uscodexml found at the Cornell University Law School website into a format that

could be read and visualized by Treemap 4.1. In this section the following topics will be

covered:

 Initial steps taken in writing the program

 Details about the program as it currently stands

 Difficulties that arose during the process

Initial Steps

 The first thing that had to be done when the decision was made to begin the process of

writing a program to achieve the above mentioned goals was to select a language in which to

write said program. C# was chosen at this point because of my familiarity with the language and

the fact that C# has a reasonable well-constructed XML parser (System.Xml) included in its

libraries. With the language selected I then began planning out what functionalities, and there

for classes, that would be needed and it was decided that a simple model-view-controller

structure would work best for this program as it works for most any type of program. Below is a

UML model of the classes and methods as they came to be:

8

The intended functions of these classes were as follows:

 The UsCodeXmlReader model class was to handle all of the input processes necessary,

such as grabbing the necessary things from the uscodexml files being processed

 The UsCodeXmlWriter model class was to handle all of the output processes necessary,

such as writing XmlElements with specified attributes to an XmlDocument to later be

saved out to a file.

 The UsCodeController controller class was to actually specify how the input and output

processes were to be handled.

 The UsCodeProcessor view class was to be a GUI, something much friendlier than a

command line interface, to handle the user’s interactions with the program.

It was not until the implementation of these classes that problems began to occur.

The Program as It Currently Stands

 The program as it currently stands looks something like this (the image can be seen on

the next page due to its large size and degree of detail:

9

Simply from looking at the size of these classes one can begin to see the problems that must have

occurred in the course of writing the program. The classes are far too large and complicated and

should have been split up into smaller, more specific helper classes in order to make this

program function properly. Now, let us go through each class, one method at a time, and try to

find out what went wrong and where.

10

The UsCodeXmlProcessor Class

 This class was to serve as a view, handling all interaction with the user. I will not go into

a great amount of detail here as this is simply a view for the program and because everything in

this class actually functioned as intended. The methods and attributes can be viewed in the class

diagram on page 9.

The UsCodeController Class

 This class was to serve as a controller, managing the 2 model classes UsCodeXmlWriter

and UsCodeXmlReader and thus managing all of the input and output processes, for the program

and contained the following methods:

 public void ProcessTheFilesAndOutputAnotherFile()

o Loops through the list of files to be processed, performs all necessary input

functions, performs all necessary output functions, and finally adds the file that

was just processed to the list of files that have been processed

o Did not work due to problems with helper methods

 private void performNecessaryInputFunctions()

o Called all of the necessary input functions

o Did not work due to problems with helper methods

 private void

getListOfListOfSubdivisionsAndContentsIfTheyExistOrJustGetC

ontentsIfNot()

o Did just what the method name said it was supposed to do

 private bool determineIfThereAreFurthurSubdivisions()

o Determines if there are any further subdivisions in the section

 private void addNodesBasedOnTheNameOfTheSubdivision()

o Appends nodes to the tree based on the name being read in from the file

o Did not work due to a faulty algorithm

 private bool

checkToSeeIfDuplicatesExistWithinTheOutputXmlDocument()

o Checks to see if any elements already exist with the name being read in from the

uscodexml file

The UsCodeXmlWriter Class

 This model class defined all output processes necessary for writing an XML file that

would have been readable by the Treemap 4.1 program and contained the following methods:

11

 public void AppendBranchElementToTheTree(string nameValue,

string headerValue, string contentsValue, int

wordCountValue, string referencesValue, int

numberOfReferencesValue)

o Appends a branch element to the tree with the passed in attribute values

o Parameters:

 nameValue - the value of the name (of the subdivision) attribute to be

written to the element

 headerValue - the value of the header (of the subdivision) attribute to

be written to the element

 contentsValue - the value of the contents (of the subdivision)

attribute to be written to the element

 wordCountValue - the value of the wordCount (of the subdivision)

attribute to be written to the element

 referencesValue - the value of the references (of the subdivision)

attribute to be written to the element

 numberOfReferencesValue - the value of the

numberofReferences (of the subdivision) attribute to be written to the

element

 public void AppendBranchElementToABranch(string nameValue,

string headerValue, string contentsValue, int

wordCountValue, string referencesValue, int

numberOfReferencesValue)

o Appends a branch element to a branch the passed in attribute values

o Parameters:

 nameValue - the value of the name (of the subdivision) attribute to be

written to the element

 headerValue - the value of the header (of the subdivision) attribute to

be written to the element

 contentsValue - the value of the contents (of the subdivision)

attribute to be written to the element

 wordCountValue - the value of the wordCount (of the subdivision)

attribute to be written to the element

 referencesValue - the value of the references (of the subdivision)

attribute to be written to the element

 numberOfReferencesValue - the value of the

numberofReferences (of the subdivision) attribute to be written to the

element

12

 public void AppendLeafElementToABranch(string nameValue,

string headerValue, string contentsValue, int

wordCountValue, string referencesValue, int

numberOfReferencesValue)

o Appends a leaf element to a branch with the passed in attribute values

o Parameters:

 nameValue - the value of the name (of the subdivision) attribute to be

written to the element

 headerValue - the value of the header (of the subdivision) attribute to

be written to the element

 contentsValue - the value of the contents (of the subdivision)

attribute to be written to the element

 wordCountValue - the value of the wordCount (of the subdivision)

attribute to be written to the element

 referencesValue - the value of the references (of the subdivision)

attribute to be written to the element

 numberOfReferencesValue - the value of the

numberofReferences (of the subdivision) attribute to be written to the

element

 public void AppendLeafElementToALeaf(string nameValue,

string headerValue, string contentsValue, int

wordCountValue, string referencesValue, int

numberOfReferencesValue)

o Appends a leaf element to a leaf with the passed in attribute values

o Parameters:

 nameValue - the value of the name (of the subdivision) attribute to be

written to the element

 headerValue - the value of the header (of the subdivision) attribute to

be written to the element

 contentsValue - the value of the contents (of the subdivision)

attribute to be written to the element

 wordCountValue - the value of the wordCount (of the subdivision)

attribute to be written to the element

 referencesValue - the value of the references (of the subdivision)

attribute to be written to the element

 numberOfReferencesValue - the value of the

numberofReferences (of the subdivision) attribute to be written to the

element

 public void WriteTheXmlDocumentToFile()

13

o Writes the XML document out to file

 private void appendDeclarationsElement()

o Adds the attribute declarations element to the tree

o Does not work properly due to the nature of the attribute “nodes” required

by the Treemap 4.1 program. These were added as InnerText properties,

but the < and > did not display and were instead replaced by < and >

 private void createTreeRootElement()

o Creates the XML declaration and root of the tree

 private void addAttributesToSelectedElement(XmlElement

selectedElement, string nameValue, string headerValue,

string contentsValue, int wordCountValue, string

referencesValue, int numberOfReferencesValue)

o Adds attributes with the passed in values to the selected XML element

o Parameters:

 selectedElement - the element to which these things are to be added

 nameValue - the value of the name (of the subdivision) attribute to be

written to the element

 headerValue - the value of the header (of the subdivision) attribute to

be written to the element

 contentsValue - the value of the contents (of the subdivision)

attribute to be written to the element

 wordCountValue - the value of the wordCount (of the subdivision)

attribute to be written to the element

 referencesValue - the value of the references (of the subdivision)

attribute to be written to the element

 numberOfReferencesValue - the value of the

numberofReferences (of the subdivision) attribute to be written to the

element

The UsCodeXmlReader Class

 This model class defined all input processes necessary for reading an XML file that was

part of the uscodexml set of files and extracting data necessary to output a file that would have

been readable by the Treemap 4.1 program and contained the following methods:

 public List<string>

GetTheUpperLevelDivisionsFromTheXmlFile()

o Grabs the nodes with the upper level subdivisions and adds the inner text, and

thus the names of those upper level subdivisions, of those nodes to a list

14

o Returns: A list of string items representing the subdivisions above section

 public void GetNameOfTheSectionFromTheHeader()

o Grabs the header text from the XML file, grabs the section number out of it, and

assigns the value to the data member "name"

o Does not function as intended; a better algorithm for extracting the name

should have been formulated

 public void GetTheHeaderInfoFromTheHeader()

o Grabs the header text from the XML file, grabs everything after the section

number out of it, and assigns the value to the data member "header"

o Does not function as intended; a better algorithm for extracting the name

should have been formulated

 public List<List<string>> GetTheContentsAndOrSubdivisionsFromTheXmlFile()

o Returns: A list of lists (2) of strings, the first list [0] containing the names of the

subdivisions below section and the second list [1] containing the contents of those

subdivisions at a corresponding index

 public void GetTheContentsFromTheXmlFile()

o Gets the text from the contents nodes and appends it to the “contents” string

o Does not function as intended; a better algorithm for extracting the name

should have been formulated

 public void GetTheReferencesFromTheXmlFile()

o Gets the text from the reference nodes and adds it to the list of references

 public void

FigureUpTheTotalsForTheCountersAndCompileTheReferencesStrin

g()

o Figures up the totals of the number of words in the subdivision, the number of

references, and compiles a string of all of the references in a subdivision

 private XmlNodeList grabTheTaggedItemFromTheXmlFile(string

tagName)

o Returns a XmlNodeList of the elements with tags matching the passed in string

tagName and returns an XmlNodeList of those items

 private string getReferencesString()

o Iterates through the list of references and returns a string containing all of the

references, each on a new line

 private int getNumberOfReferences()

o Returns the number of references in the references list

 private int getTheWordCountOfTheContents()

o Returns the number of words in the contents string

15

Difficulties

 Several difficulties arose throughout the course of this project. How these could have

been avoided and potential resolutions will be covered in the next section.

 The primary difficulty that arose during the course of this project was dealing with the

format of the XML files being read in. These XML files were clearly meant to be the

back end of a set of web pages and did not translate very well for the intended purpose of

this project.

 Another problem may have been that I decided to construct the translation program in

C#, a programming language I have not actively used in over a year. The XML libraries

of the language are significant and would have served me well had I been using a

language I was more familiar with.

 Yet another issue that arose was my general unfamiliarity with XML in general and the

fact that I ended up doing a lot of reading towards the end of the project when time began

to become an issue.

 The relatively short length of the summer semester presented some major time

management challenges, but I do not believe that this severely impacted the project in

any significantly negative way.

16

Programmatic XML Conversion: The Project As It Should Have Been

 First off, I believe there is absolutely no need to redesign this program from the ground

up as I do not believe the design flaws were quite that massive. The existing program could have

been made to function if more time had been allowed. However, there were a number of

improvements that could have been made.

The UsCodeXmlProcessor Class

 There are no major design flaws in this class as it was designed as a simple view to

interact with the program and therefore redesigning it is unnecessary.

The UsCodeController Class

 No major redesign of this class is necessary except for fixing the problems that currently

exist in the class. These are:

 public void ProcessTheFilesAndOutputAnotherFile()

o Did not work due to problems with helper methods

o Resolution: Fix the helper methods

 private void performNecessaryInputFunctions()

o Did not work due to problems with helper methods

o Resolution: Fix the helper methods

 private void addNodesBasedOnTheNameOfTheSubdivision()

o Did not work due to a faulty algorithm

o Resolution: Take the time to formulate a better algorithm

The UsCodeXmlWriter Class

 Some of the methods in this class function as intended, but several still do not. This

could be resolved with a few simple modifications.

 None of the Append Element methods work as intended as they do not add the proper

element in the proper place

o Resolution: this could be solved by adding in a few conditionals to make the

decisions of what needs to be added where based on the name of the previous

subdivisions.

17

 Example: if the previous XmlElement added was a section (leaf) that was

appended to a Part (branch) and the next XmlElement to be appended is

another section then that XmlElement should be appended to the Part

below the previous leaf (a section) that was added to the branch (also a

section).

<branch>

 <attribute name=”name” value=” Part X”/>

 <leaf>

 <attribute name=”name” value=” Section X”/>

 </leaf>

 <leaf>

 <attribute name=”name” value=” Section Y”/>

 </leaf>

</branch>

 The appendDeclarationsElement() and

addAttributesToSelectedElement() methods does not work correctly in its

current form. It could be fixed by finding a way to append literals of “<” and “>” instead

of “<” and “>” in the inner text of an XmlElement. Otherwise, there is no way to

add the attributes in the necessary format, which is a sort of unusual half-node, to the

respective XmlElements.

The UsCodeXmlReader Class

 As with the UsCodeXmlWriter class, some of the methods in this class function as

intended, but several still do not. These problems are more severe than those of the

UsCodeXmlWriter class and would require more complex problem solving.

 The GetNameOfTheSectionFromTheHeader(),

GetTheHeaderInfoFromTheHeader(), and

GetTheContentsFromTheXmlFile()methods all suffered from what was

essentially the same problem: getting the incorrect items from the XML file being read

in. This could be resolved by:

o First, doing further research into how the U.S. Code is broken up in the

uscodexml files.

o Secondly, grab the proper items from the uscodexml file.

The primary problem with this class was that it was far too large and clunky. This could have

been solved by refactoring this class and extracting a helper class or two and having objects of

18

those classes present in this class instead of having everything jammed into this class as it was. A

good way to do this perhaps would have been to:

 Extract the methods, as well as the appropriate data members and properties, that grabbed

the necessary items from the XML file an extract these into a helper class that I would

have called UsCodeXmlElementReader. The methods I would have extracted

include:

o GetTheUpperLevelDivisionsFromTheXmlFile()

o GetNameOfTheSectionFromTheHeader()

o GetTheHeaderInfoFromTheHeader()

o GetTheContentsAndOrSubdivisionsFromTheXmlFile()

o GetTheContentsFromTheXmlFile()

o GetTheReferencesFromTheXmlFile()

o grabTheTaggedItemFromTheXmlFile()

What was left could have been left in the class as it was and the UsCodeXmlElementReader

object could have performed it necessary function as a helper class.

General Comments about Problem Resolution in Version 2.0

 Problem: Clunky format of the XML files being read in by the program

Resolution: I would read in the data from each XML file as text, that is to say grab the

string information from the nodes that contain such data, and create a new text document

for each XML file and would then read each of these files and take what I needed from

the text as I am much more comfortable dealing with text files than with XML.

 Problem: C# unfamiliarity

Resolution: If I actually were to begin again from the beginning I would certainly not use

C# as my programming language of choice. I would use a language with which I am

much more familiar with: Ruby. Ruby has an XML processing module called REXML

that is apparently very efficient and might have been more useful than C#’s System.Xml.

 Problem: I was unfamiliar with XML at the beginning

Resolution: I would more extensively research XML in the early stages of planning in

order to prepare myself for the tasks necessary later in the course of the project. I

borrowed several books and read them towards the end of the project, but it was too late

by that point to correct the problems that had cropped up in my program.

 Problem: The relatively short length of the summer semester

Resolution: I would budget my time more efficiently, especially towards the beginning

when there was an abundance of time to do research and prepare myself for what lay

ahead of me: the program itself.

19

Conclusions

 In conclusion, I would like to say, although it might sound incredibly cliché, that I have

learned quite a lot from doing this project. I learned quite a good deal about the following:

 C#’s XML processing abilities via System.Xml

 Cyclomatic Complexity as a theoretical complexity measure for complex structures,

although I never actually got to apply it to the project

 Treemapping as a visual complexity measure for complex structures

 That the “best laid plans of mice and men often go astray” when developing software of

any size or complexity. These problems just become larger and more complex in direct

correlation to the project where they occur.

I am grateful for the opportunity I was given to learn about these topics and that I was given the

opportunity to write this report to explain the project and its results. I hope it has been

illuminating.

