
10/19/2009

1

Good Programming Practices

Things We Occasionally Forget To Do

Things we noticed

 High level stuff

 Cohesion && Coupling

issues

 Problems separating

concerns

 Model-View-Controller

pattern

 Code level stuff

 Source folders

 Packages

 Comments

 Javadoc

 Inline

 Testing

 Thorough testing

 Appropriate test names

 Readable code

10/19/2009

2

Cohesion && Coupling

 Remember: we want our projects to have high cohesion

and low coupling

 What this means:

 Given two lines of code, A and B, they are coupled when B

must change behavior only because A changed.

 They are cohesive when a change to A allows B to change so

that both add new value.

Separation of concerns

 What this means:

 This is the process of separating a program into distinct

features that overlap in functionality as little as possible.

 Consequently:

 As little program code as possible needs to be in your view

(GUI/console/whatever) class

 This can always be fixed through refactoring, but it’s a good

idea to just not do it in the first place

10/19/2009

3

Model-View-Controller (1)

 This is a very basic and very important pattern in

software engineering

 Helps with separation of concerns

 Helps with coupling && cohesion (to a degree)

Model-View-Controller (2)

10/19/2009

4

Model-View-Controller (3)

 We have discussed this extensively both this and last

semester

 If you have further questions please use Google wisely or

talk to Josh or Dr. Lloyd

End of high level stuff

 Now on to the code level stuff…

10/19/2009

5

Source Folders

 Within your project you should have a number of source

folders:

 src

 tests

Packages

 Packages within your project should have descriptive

names following a reverse URL convention

 Examples:

 edu.westga.model

 edu.westga.modelTests

 edu.westga.controller

 edu.westga.view

10/19/2009

6

Inline Comments

 You should always add inline comments if what the code

is doing is not explicitly clear

javadoc comments

javadoc comments are similar to the XML comments from

C# in that they are visible in others classes when an

object is used:

10/19/2009

7

Testing: Thoroughness

 Always make sure to thoroughly test your classes and

methods therein

 Remember to test boundaries where applicable

 If a method can only return 2 – 3 possible results then test for

all possibilities

Testing: JUnit Version

 Make sure to always use JUnit 4

10/19/2009

8

Testing: Test Names (1)

 It is very important to have proper test names

 This is self-documenting code

 Eliminates the need for comments in test cases

 Good test name:

shouldDoSomethingWhenSomethingElseHappens

 Bad test name:

testX

Testing: Test Names (2)

10/19/2009

9

Readable Code

 It is always a good practice to chop your code into

sections to make it more readable

Bad

10/19/2009

10

Good

Best

10/19/2009

11

???? || ?!?!

 Questions?

