Good Programming Practices

Things We Occasionally Forget To Do

Things we noticed

» High level stuff

Cohesion && Coupling
issues

Problems separating
concerns
Model-View-Controller
pattern

» Code level stuff
Source folders
Packages
Comments

Javadoc
Inline
Testing
Thorough testing
Appropriate test names

Readable code

10/19/2009

Cohesion && Coupling

» Remember: we want our projects to have high cohesion
and low coupling
» What this means:

Given two lines of code, A and B, they are coupled when B
must change behavior only because A changed.

They are cohesive when a change to A allows B to change so
that both add new value.

Separation of concerns

» What this means:

This is the process of separating a program into distinct
features that overlap in functionality as little as possible.

» Consequently:
As little program code as possible needs to be in your view
(GUl/console/whatever) class

This can always be fixed through refactoring, but it’s a good
idea to just not do it in the first place

10/19/2009

Model-View-Controller (1)

» This is a very basic and very important pattern in
software engineering

» Helps with separation of concerns
» Helps with coupling && cohesion (to a degree)

Model-View-Controller (2)

View

Controller

Model1 Model2 Model3

10/19/2009

Model-View-Controller (3)

» We have discussed this extensively both this and last
semester

» If you have further questions please use Google wisely or
talk to Josh or Dr. Lloyd

End of high level stuff

» Now on to the code level stuff...

10/19/2009

Source Folders

» Within your project you should have a number of source
folders:

src

File Edit Source Refactor Navigate Search Project

tests “ -
|- [$-0-Q- | &8
{# Package Explorer £2 . = O|[
8%~
=] b‘J Example
(@ src
B JRE System Library [Javad
Packages

» Packages within your project should have descriptive
names following a reverse URL convention

» Examples:
File Edit Source Refactor Mavigate Search
edu.westga.model .
| - |%-0- Q- |
edu.westga.modelTests - ——
[package Explorer £3 8
edu.westga.controller 5% e
edu.westga.view Bl & Example
- src

i £ edu.westga.controller
- H} edu.westga.model

: £ edu.westga.view

B tests

E} =

10/19/2009

Inline Comments

» You should always add inline comments if what the code
is doing is not explicitly clear

%/

public class ModelOne {

public ModelOne () {
// Anything that is not explicitly clear in your code

hould be accompanied by an inline commuent

javadoc comments

javadoc comments are similar to the XML comments from
C# in that they are visible in others classes when an
object is used:

public void doSomethingElse() {
this.thelMl.thisMethodDoesSomethingtoSomething (this.testInt)

} @ void edu.westga.model.ModelOne.thisMethodDoesSomethingtoSomething(int x)
As you can see, whatever you type in the javadoc comment appears here
Parameters:

X: a parameter
X

Press 'F2' for FDC_IE‘

10/19/2009

10/19/2009

Testing: Thoroughness

» Always make sure to thoroughly test your classes and
methods therein
Remember to test boundaries where applicable
If a method can only return 2 — 3 possible results then test for
all possibilities

Testing: JUnit Version

» Make sure to always use JUnit 4

ol

JUnit Test Case

Select the name of the new JUnit test case. You have the options to specify
the class under test and on the next page, to select methods to be tested.

" Mew JUnit 3 test 57 New JUnit 4 test

I

Source folder:] Exampleftests Browse...
Package:] edu.westga.modelTests Browse...
Name: | ModeloneUnitTests

Superclass: l java.lang.Object Browse.,,

Which method stubs would you like to create?

Testing: Test Names (1)

» It is very important to have proper test names
» This is self-documenting code

» Eliminates the need for comments in test cases

» Good test name:
shouldDoSomethingWhenSomethingElseHappens

» Bad test name:
testX

Testing: Test Names (2)

@Before
public void setUp() throws Exception {
try {
this.theMl = new ModelOne():
} catch{Exception e) {
// nothing to really do here
}
}

[@Test

public void shouldGetFivelWhenFourIsPassedInToThisMethodDoesSomethingtoSomething()
int expected = 20;
int testVar = 4;
int actual = this.thell.thisNethodDoesSomethingtoSomething(testVar):

assertEguals (actual, expected):;

10/19/2009

Readable Code

» It is always a good practice to chop your code into
sections to make it more readable

Bad

public class ModelOne {

int something;
public ModelOne() {
'/ Anything that is not explicitly clear in your code

// should be accompanied by an inline comment
this.sonmething = 5;

H

public int thisMethodDoesSomethingtoSomething(int x) {
return this.sowmething = this.something * x;

}

10/19/2009

Good

public class ModelOne {
// data member that will always
// be initialized to be S
int something:

7%
* default constructor

requires: nothing

* ensures: creation of a new object of this type

%/
B public ModelOne() {
// Anything that is not explicitly clear in your code
// should be accompanied by an inline cormwent
this.something = 5;

}
E FE
+* wultiplies the data member "something” by the passed in value "x"
* and then returns that value
®
* requires: null && x ! DI
* @param Xx: the value to multiply the data member "something” by
* @return "something™ multiplied by the passed in value "x"
&/

public int thisMethodDoesSomethingtoSomething{int x) {
return this.something = this.something * x;

Best

public class ModelOne {
/

data merhers FEEREE

// data member that will always
// be initialized to be §
int something:

[f RRRR R AR AR RARARAEAARARRAAIANT CONSLLUCLOL (3) FFAAARARRARARAEAARARRRARARAAAT

a fen

* default constructor

* requires:

nothing

+ ensures: creation of a new object of this type

public ModelOne() {
// Anything that is not explicitly clear in your code
// should be accompanied by an inline comment
this.something = S;

J/ TETRETTETTTLETRTTLARTTLATEINISE public methods TIETRIITETETTEIRTTEARTTLETRART

multiplies the data member "something” by the passed in value "x"
and then returns that value

requires: X !'= null €€ x '= 0
+ @param x: the value to multiply the data member "something” by
+ @return "something” multiplied by the passed in value "x"
0,

- public int thisMethodD hingtoSomething (int x) {

return this.something = this.something * x;

10/19/2009

10

P22 || P17

» Questions!?

10/19/2009

11

