
10/19/2009

1

Good Programming Practices

Things We Occasionally Forget To Do

Things we noticed

 High level stuff

 Cohesion && Coupling

issues

 Problems separating

concerns

 Model-View-Controller

pattern

 Code level stuff

 Source folders

 Packages

 Comments

 Javadoc

 Inline

 Testing

 Thorough testing

 Appropriate test names

 Readable code

10/19/2009

2

Cohesion && Coupling

 Remember: we want our projects to have high cohesion

and low coupling

 What this means:

 Given two lines of code, A and B, they are coupled when B

must change behavior only because A changed.

 They are cohesive when a change to A allows B to change so

that both add new value.

Separation of concerns

 What this means:

 This is the process of separating a program into distinct

features that overlap in functionality as little as possible.

 Consequently:

 As little program code as possible needs to be in your view

(GUI/console/whatever) class

 This can always be fixed through refactoring, but it’s a good

idea to just not do it in the first place

10/19/2009

3

Model-View-Controller (1)

 This is a very basic and very important pattern in

software engineering

 Helps with separation of concerns

 Helps with coupling && cohesion (to a degree)

Model-View-Controller (2)

10/19/2009

4

Model-View-Controller (3)

 We have discussed this extensively both this and last

semester

 If you have further questions please use Google wisely or

talk to Josh or Dr. Lloyd

End of high level stuff

 Now on to the code level stuff…

10/19/2009

5

Source Folders

 Within your project you should have a number of source

folders:

 src

 tests

Packages

 Packages within your project should have descriptive

names following a reverse URL convention

 Examples:

 edu.westga.model

 edu.westga.modelTests

 edu.westga.controller

 edu.westga.view

10/19/2009

6

Inline Comments

 You should always add inline comments if what the code

is doing is not explicitly clear

javadoc comments

javadoc comments are similar to the XML comments from

C# in that they are visible in others classes when an

object is used:

10/19/2009

7

Testing: Thoroughness

 Always make sure to thoroughly test your classes and

methods therein

 Remember to test boundaries where applicable

 If a method can only return 2 – 3 possible results then test for

all possibilities

Testing: JUnit Version

 Make sure to always use JUnit 4

10/19/2009

8

Testing: Test Names (1)

 It is very important to have proper test names

 This is self-documenting code

 Eliminates the need for comments in test cases

 Good test name:

shouldDoSomethingWhenSomethingElseHappens

 Bad test name:

testX

Testing: Test Names (2)

10/19/2009

9

Readable Code

 It is always a good practice to chop your code into

sections to make it more readable

Bad

10/19/2009

10

Good

Best

10/19/2009

11

???? || ?!?!

 Questions?

