CS 6311 – Programming Languages I – Fall 2006
Assignment #2 (125 pts)

Due: 10:00pm, Wednesday 11/29/6
Name: Florin Zidaru

Directions: The answers to the following questions must be typed in Microsoft Word and submitted as a Word document by the due date. There are a total of 30 questions.

1. Explain how a primitive type such as an integer or a double can be considered an abstract data type. (2 pts)

There are several reasons why a primitive type can be considered an abstract data type:

· the definition of a primitive type and its operations on objects are contained in a single syntactic unit

· primitive types employ the concept of data abstraction: information hiding (the actual format of the data value in a memory cell is hidden from the user)

· the only operations allowed are only those provided by the type and those that can be created using the built-in operations

2. Give two advantages of why providing accessors to private data within a class is better than making the data public? (4 pts)
a. By providing accessors, there is an increased control over the variable: we can control who is accessing it as opposed as making it public when all the classes can access that variable; this can be very handy when we try to provide, for example, security.
Example: for a SuperMarket register the “total to be paid” is probably stored using a data member that has a get property – we only want to be able to read that information and not to modify it. We do not want the guy at self-check out to be able to modify his total due. So, using accessors information hiding is provided.
b. Using a set accessor, special conditions can be ensured on a data member. Example: if we want to ensure that a data member can be only between 10 and 20 we can add this condition inside a set accessor. This provides robustness and increases reliability.
3. Give a reason why a language would include the ability to make a data member protected. (Hint: think along the lines of is there an advantage of making the data member protected compared to public or private.) (3 pts)
If we want to inherit behavior from a parent class to some sub-classes and we want to make sure no other classes get access to the “protected” information then we use the keyword protected. Example: in a parent-class we have a private method but we realize we want the same behavior in its subclasses but nowhere else; then, we make that method protected. If we would make this method public then other unwanted classes can access it, and if we make it private then only the parent class can access it even though is inherited.
So, my opinion is that a language would include the ability to make a data member/ method protected to provide code reuse and reliability.
4. Short-circuit logic, uses a form of lazy evaluation that only evaluates the Boolean expressions in a statement in a left to right order only until the truth value of the entire expression is known. Short circuit operations can be defined using standard if-else expressions. Rewrite the following Boolean expression as an if-else statement that represent the equivalent short circuit logic where only one subexpression is used per expression, e.g. if (e1). e1 and e2 represent Boolean subexpressions.

a. e1 and e2 (2 pts)

if (e1).e2
b. e1 or e2 (2 pts)

if (e1) else e2
5. One of the goals of object-oriented programming is reuse. Explain how dynamic binding supports reuse? (3 pts)

I’ll try to explain my answer through examples. Let’s say we have a parent class: Class1 that contains a virtual method “MyMethod”. All its subclasses: Class2 and Class3 override this method and add different functionality to it. When we call “MyMethod” the correct functionality will be dynamically determined. (functionality of Class2 and Class3). This is possible because dynamic binding supports reuse; also, we can add additional classes in the future to override “MyMethod” and bind to it different additional functionality (in the same time, we do not affect the functionality of the old code).
Dynamic binding provides a high degree of flexibility. The advantage for subclasses is the ability to request an operation (such as “MyMethod”) without explicitly selecting one of its variants; the choice only occurs at run-time. This is essential in large systems, where many variants may be available; dynamic binding protects each component against changes in other components.

6. Should abstract methods always be dynamically bound? Explain. (3 pts)

I believe the answer is “Yes”. I say this because an abstract method will always have to be overridden (functionality will be bound at run-time). So, at run-time, depending of the functionality of the method that overrides the abstract method, abstract methods will yield different results.

7. It is not possible to create an object of an abstract class, does this mean that variables of an abstract class cannot be declared? Explain. (2 pts)

No. We can declare a variable of an abstract class type but we cannot instantiate it. To instantiate it we need to use one of the sub-classes.
8. Many programming languages provide a for loop and a foreach loop, why would a language provide these two looping constructs that are nearly identical? (3 pts)

“foreach” allows you to iterate over the contents of a collection without having to access elements by index, as opposed to a for loop which needs an index. “foreach” takes advantage of the Collections Enumerable Interface and provides a much nicer solution to iterate through a collection of items. “foreach” will stop and no more elements are available – this provides increased reliability. With a “for” situations exist when the programmer needs to know exactly how many iterations are done – this puts more responsibility on the programmer.

Both of those are used towards the same result, but the way they work for collections makes the “foreach” a much nicer solution. Anyways, some people say that “for” is better when trying to get higher performance.
9. What is the output of the following Pascal-like program for the following input:

5, 4, 3, 2, 1

The parameter x in procedure Q is pass by value and the parameter c is pass by reference. (12 pts)

Program P();

var a, b, c, d, e: integer;

Procedure Q(x: integer; var c: integer)

var b: integer; b=0;
begin

a = b - e;

b = 3 * c;

x = a + d;

c = a + x;

writeln(a, b, c, x);

end

begin

readln(a, b, c, d, e);

Q(a, b);

Q(b, c);

Q(d, e);

writeln(a, b, c, d, e);

end

Output: -1 12 0 1

 -1 9 0 1

 -1 3 0 1

 -1 0 0 2 0
10. Given the following C program where arrays are 0-based:

int value = 4; // Declare a global variable and initialize it
int list[5] = {4, 3, 2, 1, 0};

void main(void)

{

swap(list[2], value);

swap(list[2], list[3]);

swap(value, list[value]);

}

void swap(int a, int b)

{

int temp;

value = value – 1 ;

temp = a;

a = b;

b = temp;

}

What are all the values of the variables value and list after each of the three calls to swap using the following parameter-passing methods?

a. Pass by value (4 pts)

Value: 3
List: 4 3 2 1 0

Value: 2
List: 4 3 2 1 0

Value: 1
List: 4 3 2 1 0

b. Pass by reference (4 pts)

Value: 2

List: 4 3 3 1 0

Value: 1

List: 4 3 1 3 0

Value: 3

List: 4 0 1 3 0

c. Pass by value-result (4 pts)

Value: 2

List: 4 3 3 1 0

Value: 1

List: 4 3 1 3 0

Value: 3

List: 4 1 1 3 0

d. Pass by name (4 pts)

Value: 3
List: 4 3 3 1 0

Value: 2

List: 4 3 1 1 0

Value: 1

List: 4 3 1 1 0

11. Given the following main method code in C#:
static int Main(void)
{

 A a;

 B b;

 a.R();

 b.R();

 a = b;

 a.R();

}

a. What is the output when executing Main given the following definitions of the classes A and B? (3 pts)

class A

{

 public virtual void P() { Console.WriteLine("A::P"); }

 public void Q() { Console.WriteLine("A::Q"); }

 public void R() { P(); Q(); }

};

class B : A

{

 public new void P() { Console.WriteLine("B::P"); }

 public new void Q() { Console.WriteLine("B::Q"); }

};

Output: A::P

 A::Q

 A::P

 A::Q

 A::P

 A::Q
b. What is the output when executing Main given the following definitions of the classes A and B? (3 pts)

class A

{

 public virtual void P() { Console.WriteLine("A::P"); }

 public void Q() { Console.WriteLine("A::Q"); }

 public void R() { P(); Q(); }

};

class B : A

{

 public override void P() { Console.WriteLine("B::P"); }

 public new void Q() { Console.WriteLine("B::Q"); }

};

Output: A::P
 A::Q

 B::P
 A::Q
 B::P

 A::Q
c. Explain what causes the difference in output in A and B? (3 pts)

In part b, as opposed to a, we have dynamic binding enabled and that causes the different outputs. For dynamic binding to be enabled we need both virtual in the parent and override in the subclass.
d. What variable(s) in the Main method is(are) polymorphic? (2 pts)
 a
12. Explain how dynamic binding of a method is enabled in C#? (3 pts)

To enable dynamic binding in C# two actions need to be taken:

a. the base class method must be defined as a virtual method.
b. the override method in the derived class must be defined as override.
13. In C#, explain how a reference variable within a method is related to the stack and to the heap. (3 pts)

When we declare a reference variable, the object gets created on the heap and then we can use its reference. While the object itself will always be created on the heap, its reference (being a local variable) exists on the stack.
14. Explain why it is not possible to create an object of an abstract class. (3 pts)

An abstract class is only used to represent the concepts of a type. It is used to implement common behavior for its subclasses so creating an object of its type wouldn’t make sense.
15. For the programming assignment #4, some solutions represented the colors (“Red”, “Yellow”, etc) as an enumerated type while others put the colors in a string array by doing the following:
string[] colorArray = { "Red", "Yellow", "Blue", "Green" };
a. For the situation described, give two advantages of using an enumerated type over a string array. (4 pts)

1. easier access within an enum: instead of knowing the indices of each color we can refer to them by name

2. when the colors are in an array then we can access that array and change the values (which we didn’t want, specially because those colors were provided). With the enum we have the colors as constants.
b. If one was really adamant about using the string array approach, how could the string[] declaration be modified to replicate one of the advantages of the enumerated type given in your answer to step a. (2 pts)
If we want to provide the advantage mentioned at 2., then we would make an array whose values cannot be reassigned. The way to do that is:

static readonly string[] colorArray = new string[]{ "Red", "Yellow", "Blue", "Green" };
16. Suppose you wish to write a method that prints a heading on a new output page, along with a page number that is 1 on the first activation and that increases by 1 with each subsequent activation. Can this be done without parameters and without reference to nonlocal variables in: (Please explain your answer.)
a. C# ? (2 pts)

It can be done as follows:
 Inside the method I can have a reference variable (holds the reference of a value.)
 With each activation of the method

 we increase the value stored in the reference variable by 1

 If the value of our variable is 1 we print the header and the page number

 Else we print the page number.
b. Python? (2 pts)

It cannot be done since all the variables are dynamically created.
17. C# and Java are very similar languages, however C# supports out mode parameters whereas Java does not.

a. Give a benefit provided by C# since it allows out mode parameters. (2 pts)

With out parameters we can return multiple values from a method.
b. Give a potential drawback of providing out mode parameters. (2 pts)

Because the parameter is considered initially unassigned, assignment has to be done inside the method in order for it to complete successfully. So, whenever we choose to use out parameters we have to make sure that we remember to assign a value to our out parameter.
18. Explain why naming encapsulations are important for developing large applications. (2 pts)
Firs of all, a name can provide a lot of information about the goal of the encapsulation. So future code editors will have a easier task in debugging.
Second, when developing large applications it is a high chance that different teams work on the application. By conveniently naming the encapsulation, communication between the groups is facilitated (eased) and this leads to a reliable result.
19. What dangers are avoided in C# and Python by having implicit garbage collection? (2 pts)

Heap overflow is avoided since all the objects explicitly created and not used are automatically deleted by the garbage collection. Memory useless occupied is freed which leads to performance improvement and reliability. Also, the garbage collection takes away some responsibility from the programmer since she does not have to explicitly free the space used in the program.
20. Explain how the parent version of an inherited method that is overridden in a derived class can be called in the derived class in C#? (2 pts)

base.NameOfMethod()

21. Explain the difference between method overloading and method overriding. (3 pts)

When we override a method we change its functionality (or add other functionality) but its number of parameters and name remain the same.

Example: base class (C#):

 Public virtual ToString()

 Return myString

 Sub-class: (partially-override)

 Public override ToString()

 Return base.ToString() + anotherString

When we overload a method we change its number of parameters and we keep the same name.

 Example: class A

 Public constructor1 (param1)

 Public constructor2 ()

22. True or False. An exception can be explicitly raised in C#. (1 pt)

True.
23. Explain how an exception handler can be written in C# so that it handles any thrown exception. (2 pts)

Try

{

 code

}

catch (Exception ex)

{

 Console.Writeline (“ERROR”+ex.Message)

}

The above code will handle any exception thrown in lines from “code”. To handle any exception we have to catch a generic “Exception”. All exceptions are included in the class Exception.
24. In C#, the code in the finally block is executed no matter what (whether an exception is thrown or not). Therefore, it would seem that one could just eliminate the finally block completely and put the code that would have been placed in the finally block after the last catch block. Explain the problem with this approach (i.e., why is there a need for a finally block structure?) (4 pts)
We can get to a case where inside the catch block we need to throw the exception to the calling method. In that case the code that follows that catch block is not executed. So to make sure our code is run we include it in a finally block (this code is usually used for cleaning resources. i.e. closing an open file).
25. Given the following C# code snippets:
public void MethodA(int[] myArray)
{

try
{

1.

MethodB(myArray)

2.

PrintResults(myArray);
}

catch (FormatException ex)

{

3.

Console.WriteLine(ex.Message);

}

catch
{

4.

Console.WriteLine(“Houston, we have a problem.”);
}
5.
Console.WriteLine(“Size of array is:” + myArray.Length);
}
public void MethodB(int[] array)

{

try

{

6.

for (int i=0; i<array.Length; i++)

{

try

{

7.

Console.WriteLine(“Enter number to divide by: “);

8.

int divisor = Int32.Parse(Console.ReadLine());

9.

array[i] /= divisor;

}

catch (DivideByZeroException)

{

10.

Console.WriteLine(“Division by zero exception.”);

}

}

}

catch(ArgumentNullException)]

{

11.

Console.WriteLine(ex.StackTrace);
}

}
a. Give the line numbers of the next five lines that would be executed if line 9 threw a DivideByZeroException. (2 pts).
10, 1, 2, 5
b. Give the line numbers of the next five lines that would be executed if line 8 threw a FormatException. (2 pts).

3, 5
c. Can the code at line 4 in MethodA could ever be executed as a result of an exception being thrown in MethodB? Explain. (2 pts)

Yes it can be executed. If method B throws an IndexOutOfRangeException from inside the for the code at line 4 in method A will be executed.
26. Given the following C# code snippet:

List<string> pirateMovies = new List<string>();
string title = “: The Curse of the Black Pearl (2003)”;
pirateMovies.Add(title);

title = “: Dead Man’s Chest (2006)”;

pirateMovies.Add(title);

title = “: At the World’s End (2007)”;

pirateMovies.Add(title);

string name = “Pirates of the Caribbean ”;
Console.WriteLine(name);

string longTitle;

for (int i=0; i<pirateMovies.Count; i++)

{

longTitle = name + (i+1);

longTitle = longTitle + pirateMovies[i];

Console.WriteLine(longTitle);

}
// HERE
a. How many objects are created by the above code? (3 pts)

11
b. How many objects are garbage at the // HERE line when the above code executes? (2 pts)

7
27. C# doesn’t allow the assignment of default values for its parameters. Explain how in C# this functionality can still be incorporated into a program, even though it is not directly allowed by the programming language. (3 pts)

This functionality can be incorporated through method overloading. For example, if we have a method with two parameters and we want to have the second one by default then we can have 2 method definitions: first with one parameter and then the first line inside the method assigns the default parameter to its default value, second with 2 parameters in which case the default value of the second parameter is specified.
28. In computer science, design considerations often have a time/space tradeoff issue. Explain how this manifests itself in the eager and lazy approach to garbage collection. (3 pts)
With the eager method, even though the space is made available as soon as the space is not longer referenced, some execution time is required to maintain the counter values (this takes places every time a changing of pointers occurs). This can be an important problem when a language (like LISP) in which every action involves changing pointers. As a result, this method takes an important part of the total execution of the program. Also, the space can become an issue when storage cells are relatively small.

With the lazy approach we improve the time of execution until we get to the end of available storage. The problems come when the program needs most of the cells on the heap. In that situation, the garbage collection takes a while because most of the cells need to be traced and marked as being useful (also, in this case the space is taken by the marks also).
29. Given a C# program, describe a specific situation where you would want a class to be sealed. (Do not tell me what a sealed class is, I want a specific situation where a sealed class is needed.) (3 pts)
We want to prevent a class to be inherited: example: when creating a Singleton Class.
30. Given the following C# code and a List of student objects called students:
class HeightComparer : IComparer<Student> {

 public enum SortOrder { Ascending, Descending };

 private SortOrder order = SortOrder.Ascending;

 public HeightComparer(SortOrder theOrder) {

 order = theOrder;

 }

 public int Compare(Student stu1, Student stu2) {

 if (order = = SortOrder.Ascending)

 return stu1.Height - stu2.Height;

 else

 return stu2.Height - stu1.Height;

 }

}

and a List of Student objects called students. Give the line(s) of code to sort the students in descending order according to height. (3 pts)

 students.Sort (new HeightComparer(SortOrder.Descending))

CS 6311 –Assignment #2 – Fall 2006

