CS 6311 – Programming Languages I – Fall 2006
Assignment #1 (100 pts)

Due: 7:00pm, Monday 9/25/6
Student: Florin Zidaru

Directions: The answers to the following questions must be typed in Microsoft Word and submitted as a Word document by the due date. There are a total of 40 questions.

1. A system of instructions and data directly understandable by a computer’s central processing unit is known as what? (1 pt)

Machine code or machine language.
2. What is the name of the category of programming languages whose structure is dictated by the von Neumann computer architecture? (1 pt)

Imperative languages.
3. Although PL/I and Ada were designed to be multi-purpose languages, in fact PL/I was considered to be the “language to end all languages”, why is there such difficulty in creating a general purpose programming language applicable to a wide range of areas? (3 pts)
There is a difficulty in creating a general purpose programming language because there are many language design issues that need to be considered. If the language would serve a wide range of areas, then it would have a lot of costs: an expensive compiler (probably optimizing the compiler would be a lot harder), a very-difficult-to-create compiler due to massive features therefore very error prone, a huge cost to train programmers because they would be expected to know a lot from all the areas, those that are not familiar with the code would need a lot more time to get used to it, simplicity would not be a characteristic of such a language since the number of basic features to learn would be big, readability and writability of the language would be also affected since programming gets more complex.
4. What are the primary tasks of a lexical analyzer? (2 pts)

· essentially a pattern matcher, performing syntax analysis at the lowest level of program structure
· breaks the source code into tokens (identifiers, keywords, operators are identified)

5. True or False. The first computing machine - the analytic engine was designed and built by Charles Babbage. (1 pt)

False. The computing machine was never built.
6. A disadvantage of programming in a low-level language, such as machine code, is that the resulting code it is not portable to a different architecture. If this is such a big disadvantage, what is the advantage of compiling a program down to the architecture’s machine language? (3 pts)

Advantages of compiling a program down to the architecture’s machine language: very fast programming execution, a program in machine language can be extremely efficient making optimum use of both computer memory and processing time.
7. Explain how a design goal may affect the resulting syntax of a language. (2 pts)

Cost of Use definitely affects the resulting syntax of a language. When we think at the Cost of Use we also think at the Cost of Maintenance. A language that provides easy to understand grammar is more cost effective since the training of programmers would take less time. For example, if a language would use for its variables only one character names and would have only one representation of operations that is based on context then it would be very difficult to debug (also this applies to Readability and Writability).
8. What language started putting an emphasis on object-oriented programming? (1 pt)
Simula67 (considered to be the first object-oriented programming language)
9. Explain why the C programming language is commonly used for systems programming. (2 pts)
 - is a low-level programming language allowing the software interfaces to external devices to be written
 - it is execution efficient

 - it does not burden the user with many safety restrictions (this characteristic may be considered dangerous by some programmers)
10. In C#, integers can be assigned to double variables, but not vice versa. What design principle does this violate? (2 pts)

It violates the Reliability rule which says that a language should perform to specifications under all circumstances. (no consistency).
11. In C, parameters are pass-by-value unless the parameter is an array then it is pass by reference – what design principle does this violate? (2 pts)

This violates the Orthogonality design principle, being a rule exception (the context of use causes unexpected behavior).It also violates the Uniformity rule which says that a language should have consistency in its constructs’ behavior.
12. For a language that allows case-sensitive variable names, some would argue that this violates the readability design principle. Why is that? (2 pts)

-readability is the quality of a language that enables a programmer to understand and comprehend the nature of a program. Some believe that this principle is violated when allowing case-sensitive variables names because there can be cases where programmers used for a long period of time case-insensitive languages. After migrating to a case-sensitive language, those people may have problems understanding the outcome and contents of the program. They look at “myInt” and “myint” as the same variable in a case that this is not true. This could lead to unexpected results.
13. Many newer languages have an ArrayList class that underneath is just an array. What is purpose of using an ArrayList, if one could instead just use array? (2 pts)

An ArrayList is dynamically sizeable and an array is not. Also, most languages that provide ArrayList provide also a bunch of methods that can be used to access the ArrayList data making programming easier, faster, more reliable and easier to read.

14. True or False. In C#, when writing a class if you do not define a constructor the code will not compile. (1 pt)
False. There is a default constructor.
15. In C#, explain the benefit of using a property over creating get/set methods. Given example code that demonstrates the benefit described. (3 pts)

Encapsulation is accomplished better using properties (properties protect the fields in a class by reading and writing to them - we can have a read-only property for a class field or a write-only property to that field). One nice advantage of properties is that they allow validation of data values as they are set to an object (this is uniformly enforced, regardless of who is doing the setting).:
public class Test

{

 private int myVariable;

public int MyVariable

{

 set

 {

 if (value>1000) //for some reason we want this behavior
 myVariable=value;

 else

 myVariable=15;

 }

}

}

Another benefit would be that allow access to the state of an object as if accessing the field/data member directly, without providing public access to the field.
16. Visual Studio development allows method headers to be XML style comments. What is the advantage of writing method headers as XML code? (2 pts)

When the mouse is over the XML commented method, the description in the <summary> pops out. So XML style comments let us generate documentation from our code. This definitely contributes to the readability of the program.

17. True or False. The main method in C# must be named: static void Main(). (1 pt)
True.

18. Explain why in a declarative language, control constructs like while loops are not necessary. (2 pts)

Because in a declarative language we need to define what’s true about the desired result and there is no need to specify how to compute the result; the order of execution does not matter. Therefore, control constructs are not needed (they are provided by the underlying system). Control is the responsibility of the language, not of the programmer.
19. What is considered to be the machine language for the following:

a. purely interpreted language. (1 pt)

high- level language (the program)l
b. a hybrid language. (1 pt)

intermediate language
c. a compiled language. (1 pt)

the machine language –low-level
20. Compilation is part of the translation process for which of the language translation methods? (3 pts)

Compilation and hybrid

21. Syntax errors can occur for which of the language translation methods? (3 pts)

Compilation, interpretation, and hybrid

22. In both the purely interpreted and hybrid approach a virtual machine is used to execute the program, but the hybrid approach allows for faster execution – why? (3 pts)
Hybrid approach is faster than pure interpretation because the source language statements are decoded only once. The translation to an intermediate language allows for easier interpretation.
23. The disadvantage of using a virtual machine is that the program executes slower compared to a purely compiled program. Why then do so many languages use a virtual machine? (2 pts)
A Virtual Machine provides portability: for example, a Java application will run in any Java Virtual Machine, regardless of the hardware and software underlying the system. By using a Virtual Machine, easier debugging is possible. Also, because the Virtual Machine has no contact with the operating system, it provides a security advantage. For example, there is little possibility for a Java program to damage other files or applications.

24. Explain how in the hybrid approach to language translation that ahead-of-time compilation can provide for faster execution of the program than just-in-time compilation. (3 pts)

In the ahead-of-time compilation, the file resulted from compilation is kept around for use at a future time (no need to re-compile upon subsequent runs). So, we might have the situation in which the code is not compiled again because the compiled code is already provided, therefore providing a faster execution of the program. In just-in-time compilation, the compilation is done every time immediately before run-time.

25. Explain why it is easier to create a debugger for an interpreted language compared to a purely compiled language. (2 pts)
In compilation, the original program code is lost. Therefore, is much harder to determine the actual source line that caused the problem. In an interpreted language, all run time error messages can refer to source-level units. Interpreted languages provide flexibility for rapid prototyping.
26. What is the lifetime for a static variable found within a method? (2 pts)

Those are history sensitive variables and their lifetime is the entire life time of the program.(from the time when we get to the line in the program where we declare the variable)
27. When and where in memory does the address binding occur for an explicit heap dynamic variable within a method? (4 pts)

When: The address binding for an explicit heap dynamic variable within a method takes place when the method is called, at run-time.
Where: allocated on the run-time stack.
28. Give an example of a problem that can occur with dynamic type binding? (2 pts)

Incorrect types of right sides of assignments are not detected as errors: the type of the left side is simply changed to the incorrect type:

For example, if in a dynamically typed language we have:

 j=x

 j=y

where j and x are integers and y is an array, we have a problem. We will not have an error: j is simply changed from integer to an array, so the results will be wrong.

29. Explain how to access the classes within a namespace in both C# (2 pts) and Python (2 pts).

C#: first we import the namespace: Ex.: #using #System.Collections;
 Then we can access the classes using the name of the class followed by dot and the name of whatever member we need.

If we don’t use the import statement: #using then we can access the class by including the namespace name followed by the name of the class and member: Example: System.Collections.ArrayList.

If we want to access the class from another class within the same address:

First instantiate, an object for the class that we want to access. Then we use objectName.MethodName or objectName.property or objectName.datafield to access whatever we need in that class.
Python: All classes in one file. This file must be imported first. As opposed to C#, we still have to specify the module name after importing it.:
Example:

 import math

 math.sqrt(10)

If we don’t want to specify module prefix we need to import specific function:
 from math import sqrt

 sqrt (10)

To import all functions from a module we use a statement like: from math import *
30. In Python, all attributes are public by default, explain the mechanism that creates “private” attributes, and why this approach doesn’t strictly enforce privacy. (3 pts)
When begin an attribute with two underscore (__) the name is mangled as a way to privatize the attribute. Outside classes no mangling occurs. Those “private” variables can still be accessed, so the approach doesn’t strictly enforce privacy. (derivation of a class with the same name as the base class makes use of private variables of the base class possible)

31. Explain why dynamic type binding is so expensive? (2 pts)

Type checking must be done at run-time and every variable must have a descriptor associated with it to maintain the current type. The storage used for the value of a variable must be of varying size because different type values require different amounts of storage. The error detection capability of the compiler is diminished because any two types can appear on opposite sides of the assignment operator.

32. Describe a situation where the lifetime of a variable exceeds its scope, i.e., describe how a variable may go out of scope, but still be allocated to a memory address. (2 pts)

When we use static variables within a method their scope is that method but their lifetime is the entire life of the program.

33. Both implicit type binding and dynamic type binding can cause problems - if you assume you think you know what the type of a variable is. Explain how this problem manifests itself in both situations. (4 pts)

Dynamic type binding: suppose that in a program we have 2 integer variables: i and x and a floating point array y. If we have the assignment statement: i=x and then because of keying error we have the assignment statement i=y no error is detected. i is simply changed to a floating-point array type which leads to an erroneous result (example from book).

Implicit type binding: Can cause problems if forget to declare types and made assumptions on what you think you declared it as. This happens because implicit type binding is based on naming conventions. For example, in FORTRAN i,j,k,l are implicitly declared as integers unless otherwise specified So variables that are accidentally left undeclared by the programmer are given default types and unexpected attributes, which can cause errors that are difficult to diagnose .
34. In C#, explain how the static modifier for a method name differs from than the static modifier for a variable. (3 pts)

 When creating a static method in C#, the class name is needed to access it and not an object of that class. Static methods of a class can access only the static members of that class.
When static is used for a variable, memory is allocated to that variable on the data segment and its lifetime is the life time of the program.
35. Explain why in a dynamically-scoped language it is not possible to perform static type checking. (3 pts)
Dynamic scoping is based on the calling sequence of the subprograms, not on their relationship to each other. Let’s say we have a program with two methods. Each method has a local variable called x. In method 1 x is an integer. In method 2 x is a string. If in the program we assign to y the value of x, then y’s type value depends on the order we call the 2 methods. Because dynamic scoping has the inability to statically determine the declaration for a variable referenced as nonlocal, it has the inability to statically type check references to nonlocals.
36. In what part of memory are constants bound? (1 pt)
Data segment
37. In C#, you define constants using the const or readonly attribute, explain a situation where one would want to define a constant using readonly instead of const. (2 pts)

A constant declared with “const” is evaluated at compile time. “Readonly” is evaluated at run-time providing us with a lot more flexibility. “const” attributes are static and their value doesn’t change .”readonly” attributes can be initialized once. Let’s say we have an application were we need to pass different values for the constructor parameter for each user. In this case, we want to have a “readonly” attribute since we need to initialize it in the constructor.

 Example:

 public class myClass

 {

 private readonly myConstant;

 public myClass{}
 public myClass (int myVar)

 {

 myConstant=myVar;
 }

}
38. Both constants and enumerated types can make a program more readable. The enumerated type is essentially defined as a set of constants. If this is the case, they why use an enumerated type. Give at least two reasons. (4 pts)
Using enumerations leads to development of a safer code: only assign possible range of values to that type. Enumerations provide an efficient mechanism for working with static values that are easier to read, maintain, and use.
39. Given the following C# method:

void fun(void)

{

int a, b; /* Definition 1 */

…

while (…)

{

int a, c, d; /* Definition 2 */

… (Point 1

while (…)

{

int c, d, e; /* Definition 3*/

… (Point 2
}

} // end while

… (Point 3
}

For each of the four marked points in this function, list each visible variable, along with the number of the definition state that defines it. (6 pts)
 Point 1: b Definition 1

 a,c,d Definition 2

 Point 2: b Definition 1

 a Definition 2
 c, d, e Definition 3

 Point 3: a,b Definition 1
40. Given the following Ada-like program:

procedure Main is

X : Integer;

procedure C; -- This is a forward declaration of C which allows A to call it

procedure A is

 X : Integer;

 procedure B is

 begin -- B

 …

 end; -- of B

 begin -- A

 …

 end; of A

procedure C is

 begin -- C

 …

 end; -- of C

begin – main

…

end; -- main

Given the execution is in the following order: main calls A, A calls B, and B calls C - give the declaration of X used in A, B, and C with static scoping (3 pts) and dynamic scoping (3 pts).

Static Scoping:

 -in A: declaration of X from inside A

 -in B: declaration of X from inside A

 - in C: declaration of X from Main

Dynamic Scoping: Order of execution: main calls A, A calls B, and B calls C:
 -in A: declaration of X from inside A

 -in B: declaration of X from inside A

 - in C: declaration of X from A

CS 6311 –Assignment #1 – Fall 2006

